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Fig. 1. Given two input shapes, our approach generates a small number of pieces that may be arranged to form close approximations of the
shapes. Here, we generate six pieces that can form the outlines of either the United States or China, demonstrating that the countries have nearly
equal area (at the same scale). Note that in (b) both shapes are composed of the same set of pieces.

A geometric dissection is a set of pieces which can be assembled
in different ways to form distinct shapes. Dissections are used

as recreational puzzles because it is striking when a single set of

pieces can construct highly different forms. Existing techniques for
creating dissections find pieces that reconstruct two input shapes

exactly. Unfortunately, these methods only support simple, abstract

shapes because an excessive number of pieces may be needed to
reconstruct more complex, naturalistic shapes. We introduce a

dissection design technique that supports such shapes by requiring
that the pieces reconstruct the shapes only approximately. We find
that, in most cases, a small number of pieces suffices to tightly

approximate the input shapes. We frame the search for a viable
dissection as a combinatorial optimization problem, where the goal
is to search for the best approximation to the input shapes using a

given number of pieces. We find a lower bound on the tightness of
the approximation for a partial dissection solution, which allows

us to prune the search space and makes the problem tractable. We

demonstrate our approach on several challenging examples, showing
that it can create dissections between shapes of significantly greater
complexity than those supported by previous techniques.
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1 INTRODUCTION

Geometric dissections are a popular type of puzzle and math-
ematical tool. A geometric dissection between two shapes is
a partition of one shape into pieces, such that the pieces can
be rearranged through rigid motion to form the other shape.
Dissections have been known since ancient times. For example,
Plato described a dissection between two equally sized squares
and one larger one [Frederickson 2002]. Perhaps their first
known appearance is on a Babylonian tablet from 1800 BC,
which shows the Pythagorean theorem for the special case of
a right isosceles triangle. Fig. 2 shows a classic dissection and
one that illustrates the classic theorem.1

Dissections fascinate us because of the counter-intuitive
property that a suitable set of pieces can transform between
two distinctive shapes. This striking property means that

1More recent mathematical results include the proof that any two
polygons of equal area have a dissection between them (and that two
polyhedra of equal volume do not, in general, have a dissection between
them).
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(a) (b)

Fig. 2. (a) A classic four piece dissection between a square and a
triangle. (b) A dissection between a square and a pair of smaller
squares, which illustrates the Pythagorean theorem.

dissections are popular as recreational puzzles. The trans-
formation property is most impressive when the number of
pieces used in the puzzle is minimized. Therefore designers
of dissection puzzles usually try to minimize the number of
pieces.
In mathematics research there has been significant work

in finding minimal dissections for analytical shapes such as
circles, triangles and regular polygons.2 The Wallace-Bolyai-
Gerwien theorem [Gardner 1985] describes a procedure to
create a dissection between any two polygons of equal area,
but the number of pieces it uses may be much larger than the
minimal number needed. The computational task of determin-
ing whether a 𝐾-piece dissection exists between two polygons
has been shown to be NP-hard by Bosboom et al. [2015].
Manurangsi et al. [2016] showed that the task is similarly
hard to solve approximately.

A practical tool for designing dissections between arbitrary
shapes with a minimal number of pieces is desirable. However,
the complexity arguments cited above make this an intractable
task and even if such a tool did exist, the minimum number
of pieces might still be extremely large for many shapes.
In this paper, we introduce a practical technique for dis-

section design that largely avoids these issues. Our technique
is based on the observation that, for a large class of shapes,
it is acceptable for a dissection to approximate rather than
exactly construct the shapes. These are the shapes of complex
real-world objects whose geometric specification is fuzzy, such
as the dog’s head in Fig. 3(a). Our technique is not intended
for use on abstract shapes with an exact geometric specifi-
cation, because human perception is sensitive to distortions
in these shapes (see, e.g., Fig. 3(b)). Based on this observa-
tion, we propose a modified dissection problem in which the
input shapes impose soft rather than hard constraints. This
relaxation of the problem lets us develop an algorithm that
generates dissections that differ qualitatively from traditional
ones.

2Cohn et al. [1975] investigated the minimum number of pieces needed
for a triangle-square dissection. Kranakis et al. [2000] gave an asymp-
totic result on the minimum number of pieces needed for a dissection
between a regular 𝑚-gon and an 𝑛-gon.

(a) (b)

Fig. 3. (a) The distorted dog head is still perceived as a dog head.
(b) The distorted triangle is no longer perceived as a triangle.

(a) Input Shapes (b) Pieces (c) Arrangements

Fig. 4. The variables of the dissection problem.

Problem Statement. Let 𝑆1 and 𝑆2 denote the input
shapes, represented as polygons. Let P denote the set of dissec-
tion pieces. Let 𝐴1(P) and 𝐴2(P) denote two non-overlapping
arrangements of the pieces P. Fig. 4 illustrates these variables.
In the classic 𝐾-piece dissection problem, given the in-

put shapes and an integer 𝐾, we find pieces and arrange-
ments such that |P| = 𝐾 and the constraints 𝐴1(P) = 𝑆1

and 𝐴2(P) = 𝑆2 are satisfied. In the approximate 𝐾-piece
dissection problem, we instead minimize a shape difference
measure between the input shapes and the arranged pieces:
||𝐴1(P)− 𝑆1||+ ||𝐴2(P)− 𝑆2||.

Our core technical contribution in this work is the introduc-
tion of the approximate dissection problem and a practical
technique for solving it. To our knowledge this is the first
general technique for dissections between naturalistic shapes.
As an extension to our method, we develop a graphical

interface for refining dissections that suggests edits to the
user and visualizes how altering one part of the dissection
affects the remainder.

2 RELATED WORK

2D Shape-Guided Synthesis. Our work belongs to a
family of graphics research in which a 2D shape guides the
synthesis of some object, such as ASCII art [Xu et al. 2010],
mazes [Xu and Kaplan 2007], Escher tiles [Kaplan and Salesin
2000], calligrams [Zou et al. 2016], and connect-the-dot puzzles
[Löffler et al. 2014]. In our work, we are guided by two shapes
and the object is a set of pieces that can approximate both
shapes.

Manual Dissection Design. The last 50 years have seen
a surge of recreational interest in finding minimal-piece dissec-
tions between certain abstract figures, which are often regular
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polygons. These results are only for specific instances of the
dissection problem, but some heuristic techniques for finding
solutions have been identified. Frederickson [2003] did the
seminal work in this area. The shapes used in these dissections
are much simpler than those featured in our work.

Computational Dissection Design. There has been a
modest amount of research in computational techniques for
solving the dissection problem and some similar problems.
Zhou et al. [2012] introduced an algorithm for finding the
minimum number of pieces for an exact dissection between
shapes. Their method uses a voxel grid to represent the in-
put shapes and uses a stochastic search strategy. In theory,
a sufficient number of voxels could accurately capture the
complex organic shapes targeted by our approach, but the
results shown in their paper are limited to coarse voxel grids
and simple shapes. Our continuous solution representation
allows for more complex shapes. Zhou et al. [2014] proposed
an algorithm which partitions a 3D shape into approximately
cubic pieces and connects them with hinges so that it can
be folded into a cube. Their problem statement is related
to the dissection problem in that they try to partition an
object into pieces so that it can transform to another shape.
Unlike our approach they make no effort to minimize the
number of pieces, instead focusing on finding a viable hinge
connectivity. Huang et al. [2016] proposed a method that,
given two shapes, partitions the first into pieces that can
be connected through hinges to transform into a shape that
roughly approximates the second. Unlike the former work,
they do not require physical feasibility. They determine the
partition and hinge connectivity of the first shape through
a user-provided skeleton, which limits the generality of their
solutions. Their work targets significantly coarser approxima-
tions than ours. Kwan et al. [2016] recently proposed a novel
shape descriptor which can be used to solve the 2D collage
problem. In this problem, the goal is to tightly pack shapes
from a given library so that they approximate a larger shape.
Their problem is similar to ours in that they approximate a
shape with a set of pieces, but different in that the pieces
are fixed and only need to form a single shape. Concurrent
research by Song et al. [2017] explored the design of furniture
which can reconfigured to form a different type of furniture,
which is highly related to the dissection problem.

3 REPRESENTATION

Our solution to the approximate dissection problem stems
from a novel way of representing dissection solutions that
supports the notion of a lower bound on the objective value
of a partial dissection solution. The lower bound allows us to
prune the search space by telling us when a partial solution
cannot lead to high quality solutions.
A solution in our representation consists of three compo-

nents: (1) the connectivity representation (Fig. 5) describes
how the dissection pieces connect, (2) the geometric parame-
ters (Fig. 6) specify the actual dissection geometry under the

Fig. 5. A dissection between a dog head and a bone. The boundary
intervals are colored according to which matching constraint they
belong to and are separated by black dots. In the first arrangement,
the bolded pink boundary interval is external because it is not adjacent
to another boundary interval. In the second arrangement, the same
boundary interval is no longer external. We show the connectivity
representations next to the corresponding geometry.

(a) Edge vector sequence (b) Rotation angle

Fig. 6. Visualizing the geometric parameters. (a) A dissection piece is
represented by a sequence of edge vectors, colored according to their
boundary interval. (b) The change in the orientation of each piece
from the first arrangement to the second is represented by an angle
for that piece.

constraint of the given connectivity, and (3) the reconstruc-
tion mapping (Fig. 9) describes which regions of the input
shapes are reconstructed by which regions of the dissection
pieces.

Connectivity Representation. The connectivity repre-
sentation of a dissection solution specifies how the dissection
pieces fit together in each arrangement.
The boundary of each dissection piece is partitioned into

boundary intervals. Fig. 5 shows the pieces for a complete
dissection with the boundary intervals delimited. For each
arrangement of the pieces, we note the adjacencies between
boundary intervals; i.e., when two boundary intervals are
touching each other. If a boundary interval is not adjacent to
any others in a given arrangement, then it is termed external
in that arrangement. The external boundary intervals recon-
struct the input shape in each arrangement. The boundary
intervals are not allowed to partially overlap; i.e., in a given
arrangement, all boundary intervals are adjacent to at most
one other boundary interval.
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Fig. 7. Two boundary intervals that connect. The geometry of both
boundary intervals is parameterized by 5 edge displacement vectors.
The rest of the dissection pieces are in grey.

The connectivity representation formally consists of a se-
quence of boundary intervals for each dissection piece spec-
ifying their clockwise order and a record of the boundary
interval adjacency for each arrangement.

Geometric Parameters. The connectivity representa-
tion does not specify the geometry of the dissection. We
specify the geometry of each dissection piece as a sequence
of edge displacement vectors in clockwise order around the
piece. Each edge displacement vector forms a portion of one
of the piece’s boundary intervals.
To specify how the orientation of each dissection piece

changes as it moves from one arrangement to the other, we
use a rotation angle for each piece. Specifically, dissection
piece 𝑘 is rotated 𝜃𝑘 degrees in Arrangement 2 relative to its
orientation in Arrangement 1. The geometric parameters are
visualized in Fig. 6.

We determine the value of these geometric parameters for
a given solution by optimizing how well they reconstruct the
target shapes. This process is described in Section 4.

Matching Constraints. The matching constraints are
geometric constraints placed on boundary intervals that en-
sure the dissection pieces can physically connect. They reduce
the number of independent geometric parameters.

As mentioned previously, each boundary interval is specified
as a sequence of edge displacement vectors in clockwise order
along the dissection piece. If a pair of boundary intervals
𝛽 and 𝛽′ are adjacent, then for 𝛽′ to connect flush with 𝛽,
it must have an edge vector sequence equal to the reversal
and negation of 𝛽’s. Formally if 𝛽 = {�⃗�1, ..., �⃗�𝑁} then 𝛽′ =
{−�⃗�𝑁 , ...,−�⃗�1}. Intuitively, if 𝛽 is “male” then 𝛽′ must be
“female”. Fig. 7 visualizes this constraint.

Matching constraints lock the geometry of adjacent bound-
ary intervals into a common parameterization. In general,
matching constraints parameterize the geometry of sets of
boundary intervals, rather than pairs. This is because a bound-
ary interval 𝛽 may be adjacent to 𝛽′ in Arrangement 1 and
𝛽′′ in Arrangement 2.

Fig. 8 shows how a matching constraint controls the geome-
try of part of the dissection. Here, a single set of edge vectors

(a)

(b)

Fig. 8. (a) A matching constraint that controls the geometry of 4
different boundary intervals on the dissection pieces. Blue boundary
intervals are “male” connectors, red ones are “female”, and grey ones
are not part of the matching constraint. (b) Changes to one boundary
interval in the matching constraint affect the others. In this example,
if the dog’s mouth becomes deeper, the ear becomes longer.

parameterizes the geometry of four different boundary inter-
vals. Fig. 8(b) shows how this parameterization propagates
edits to the dissection.

We can form a partition of the boundary intervals by group-
ing them according to which matching constraint controls
them. Fig. 5 visualizes this property. Boundary intervals of
the same color belong to the same matching constraint.

Reconstruction Mapping. The reconstruction mapping
(Fig. 9) describes which regions of the input shapes are re-
constructed by which regions of the dissection pieces. The
mapping consists of two bijections Γ1(𝐼) and Γ2(𝐼), where
Γ𝛼(𝐼) is a bijection which maps a boundary interval 𝐼 on
input shape 𝛼 to an external boundary interval 𝛽 on the
dissection pieces in arrangement 𝛼.

4 EVALUATION

Given a candidate dissection solution, we evaluate how well
it approximates the input shapes by optimizing over the
dissection geometry parameters for the best approximation;
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(a) Dissection Pieces (b) Input Shape

Fig. 9. Reconstruction mapping for the dog arrangement. The external
boundary intervals on the dissection pieces (a) are colored according
to which boundary interval on the input shape (b) they reconstruct.
Internal boundary intervals (grey) are not involved in the reconstruction
mapping. Notation is shown for a dissection piece boundary interval
(𝛽) and its corresponding input shape boundary interval (𝐼). Since
the dog is the first input shape, this figure visualizes Γ1.

i.e., we solve the following constrained optimization problem:

minimize
E,𝜃

max
𝛼,𝑖

arccos(b̂𝛼,𝑖 · t̂𝛼,𝑖) + 𝜆
∑︁
𝛼

∑︁
𝑖

||b𝛼,𝑖 − t𝛼,𝑖||2

subject to
∑︁
𝑙

p𝑘,𝑙 = 0, ∀𝑘.

(1)
The objective function measures how tightly the dissection
pieces approximate the input shapes, according to the maxi-
mum angular error between dissection pieces and input shape
edge vectors. Integer 𝑖 indexes the edges of the reconstructed
shape in arrangement 𝛼. Vector b𝛼,𝑖 is edge vector 𝑖 in the
reconstruction of input shape 𝛼, and t𝛼,𝑖 is the corresponding
original input shape edge vector (i.e., the target of b𝛼,𝑖). The
value of t𝛼,𝑖 comes from the reconstruction mapping. We set
the regularization parameter to 𝜆 = 0.01.

The constraints in (1) ensure that the edge vector sequence
for each dissection piece forms a closed curve. Integer 𝑘 in-
dexes dissection pieces while 𝑙 indexes edges within a dissec-
tion piece. Vector p𝑘,𝑙 is edge vector 𝑙 of dissection piece 𝑘.
Fig. 10 illustrates the vectors involved in the objective and
constraints.
The optimization variables in (1) are 𝜃 = {𝜃1, ..., 𝜃𝐾}, the

set of rotation angles for the 𝐾 dissection pieces, and E =
{E1, ...,E𝑀}, the set of edge vector sequences that parameter-
ize the geometry for the 𝑀 matching constraints. Matching
constraint edge vector sequence E𝑖 = {e𝑖,1, ..., e𝑖,𝑁𝑖} com-
prises 𝑁𝑖 edge vectors. The vector e𝑖,𝑗 denotes edge vector 𝑗
within matching constraint 𝑖.

We solve the optimization problem in (1) using IPOPT
[Wächter and Biegler 2006]. The optimal objective value
determines the quality of the solution.

Geometry Functions. The edge vectors b𝛼,𝑖 and p𝑘,𝑙

may be written as functions of the optimization variables E

(a) Vectors for objective (b) Vectors in a constraint

Fig. 10. (a) Edge vectors involved in the objective function for Equa-
tion 1. (b) Edge vectors involved in the constraint for a piece in
Equation 1.

Fig. 11. Derivation of the formulas for the boundary interval geometry
for a single matching constraint.

and 𝜃. Each of these edge vectors belongs to a specific bound-
ary interval 𝛽 in an arrangement 𝛼. Therefore, we denote
these functions as g𝛼,𝛽,𝑖, where g𝛼,𝛽,𝑖(E,𝜃) is edge vector 𝑖
within boundary interval 𝛽 in arrangement 𝛼. For brevity, let
G𝛼,𝛽 denote the sequence of all the edge vectors in boundary
interval 𝛽 in arrangement 𝛼; i.e., G𝛼,𝛽 = {g𝛼,𝛽,1, ...,g𝛼,𝛽,𝑁}.
Fig. 11 visualizes this notation. The functions can be derived
using two geometric properties:
1. For a boundary interval 𝛽 lying on dissection piece 𝑘,

G2,𝛽 = 𝑅(𝜃𝑘,G1,𝛽) and G1,𝛽 = 𝑅(−𝜃𝑘,G2,𝛽), where 𝑅(𝜃,v)
is an elementwise 𝜃-degree rotation of the vector sequence v.
2. Let 𝛽′ denote a boundary interval adjacent to 𝛽 in ar-

rangement 𝛼. Then G𝛼,𝛽′ = −Rev(G𝛼,𝛽) where −Rev(v)
reverses the vector sequence v and applies elementwise nega-
tion.

From these properties we can write a formula for any bound-
ary interval in terms of any other in the same matching
constraint. To obtain formulas in terms of the optimization
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(a) (b)

Fig. 12. (a) Correspondences for the dog-bone dissection. Edge vectors
are colored according to the correspondence to which they belong.
Note that correspondences can be between boundary intervals on the
same or on different input shapes. (b) Examples of the relationship
between edge vector sequences for corresponding boundary intervals.
Asterisks mark the beginning of sequences. The indices 𝛼 and �̃� denote
which shape each boundary interval lies on.

variables E, we choose one boundary interval, denoted 𝛽𝑟, for
each matching constraint 𝑖, and one arrangement denoted 𝛼𝑟,
to be the “roots” and set G𝛼𝑟,𝛽𝑟 = E𝑖. Formulas for the other
boundary intervals in the matching constraint can easily be
derived by applying the two rules. Fig. 11 shows an example
of this process.
In general, the formula G𝛼,𝛽 for a boundary interval in

matching constraint 𝑖 will have the form 𝑅(±𝜃𝑘1 ...± 𝜃𝑘𝑊 ,E𝑖)
or −Rev(𝑅(±𝜃𝑘1 ...± 𝜃𝑘𝑊 ,E𝑖)); i.e., it consists of a series of
rotations of the “root” edge vector sequence possibly followed
by a reversal and negation.

5 SOLUTION SEARCH

The solution search efficiently explores our solution space for
high-quality dissections. The main idea is to enumerate partial
dissection solutions in a tree structure (Fig. 13) and prune
nodes of the tree when the partial solution they represent has
a quality lower bound greater than a pruning threshold.

5.1 Initializing the Mapping and Constraints

The initialization step divides the boundary of each input
shape into intervals. These intervals are the domain of the
reconstruction mapping—the mapping between input shape
boundary intervals and the dissection piece boundary inter-
vals that reconstruct them. The initialization also separates
the input shape intervals into corresponding pairs (Fig. 12).
These correspondences restrict the search space to a promising
region. Selecting them also initializes the matching constraints
that will be used in the dissection. Each correspondence im-
plies the existence of a single matching constraint, as we show
next.

Existence of Correspondences. Recall that the recon-
struction mapping is a pair of bijections Γ1(𝐼) and Γ2(𝐼),

where Γ𝛼(𝐼) maps a boundary interval 𝐼 on input shape 𝛼 to
a boundary interval on a dissection piece in arrangement 𝛼.
We say that an input shape boundary interval 𝐼 belongs

to a matching constraint M if Γ𝛼(𝐼) ∈ M. It turns out that
the matching constraints partition the input shape boundary
intervals into corresponding pairs. Formally, each input shape
boundary interval 𝐼 belongs to some matching constraint
M, and there exists exactly one other input shape boundary
interval 𝐼 that also belongs to M.3

Any dissection solution will partition the input boundary
intervals into corresponding pairs. We choose to specify these
corresponding pairs in advance in order to restrict the search
space.

Evaluating a Correspondence. Consider a pair of cor-
responding input shape boundary intervals (𝐼, 𝐼) that lie on
input shapes (𝛼, �̃�) and belong to matching constraint M.

The eventual dissection solution will map 𝐼 and 𝐼 to dissection
piece boundary intervals (Γ𝛼(𝐼),Γ�̃�(𝐼)) = (𝛽, 𝛽). Since 𝛽 and

𝛽 both belong to M their geometry (in any eventual solution)

must obey the constraint 𝛽−𝐶(𝛽) = 0, where 𝐶(𝑥) = 𝑅(𝜃, 𝑥)
when 𝛼 ̸= �̃� (intervals lie on different input shapes) and
𝐶(𝑥) = −Rev(𝑅(𝜃, 𝑥)) when 𝛼 = �̃� (intervals lie on the same
input shape). The value of 𝜃 depends on the eventual solution.
Fig. 12(b) visualizes these relations.

To accurately reconstruct the input shapes the geometry of
(𝛽, 𝛽) should resemble that of (𝐼, 𝐼). Thus, in order to allow
for the best reconstruction under the matching constraint, the
correspondence should minimize 𝐶(𝐼, 𝐼) = min

𝜃
||𝐼 − 𝐶(𝐼)||;

i.e., minimize shape incompatibility given freedom of rotation.

Joint Selection of Intervals and Correspondences.
Using this criterion, we jointly select the input shape bound-
ary intervals and correspondences. The input shape bound-
aries are discretized into a large number of uniformly sized
segments so that input shape boundary intervals can be de-
fined discretely. Given user-specified minimum and maximum
interval lengths, we generate a set of 𝑀 candidate boundary
intervals and

(︀
𝑀
2

)︀
candidate correspondences. We seek a set of

correspondences {(𝐼1, 𝐼1), ..., (𝐼𝑁 , 𝐼𝑁 )} which form a partition
of the input shape boundaries and minimize the following
objective:

𝑁∑︁
𝑖=1

𝐶(𝐼𝑖, 𝐼𝑖), (2)

3To see this property, consider an input shape boundary interval 𝐼.
Without loss of generality, assume 𝐼 lies on the first input shape. In any
eventual dissection solution, 𝐼 will map to a dissection piece boundary
interval 𝛽; i.e., Γ1(𝐼) = 𝛽, which belongs to some matching constraint
M. So 𝐼 belongs to M.

In Arrangement 2, 𝛽 is either external or it connects to a different
boundary interval 𝛽′. In the first case, there exists a boundary interval

on the input shape for Arrangement 2, denoted 𝐼, for which Γ2(𝐼) = 𝛽.

Since 𝛽′ belongs to M, 𝐼 belongs to M. So both 𝐼 and 𝐼 belong to
M. In the second case, the statement just made about 𝛽 applies to
𝛽′, except with Arrangement 1 instead of Arrangement 2. Since the
number of boundary intervals is finite, we must eventually reach the
first case.
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Fig. 13. Visualizing the tree search. Tree nodes (partial solutions) are
labeled with the number of matching constraints added (equal to the
search depth). Pink boxes show the connectivity representation at
each state along with the associated error for complete solutions and
the error bound for partial solutions. Input shapes (at low resolution)
are drawn around the connectivity representations in dashed lines.
Input shape boundary intervals which have their matching constraint
assigned are red, others are grey. Green boxes show the dissection
geometry at low (left) and high (right) resolutions. In the partial
solution shown at Depth 4, pieces that have only one or two boundary
intervals are drawn as line segments.

which sums the shape incompatibility across the chosen corre-
spondences. The shape incompatibility measure 𝐶 is defined
in the previous subsection. We search for solutions using a
simple enumerative approach, ignoring correspondences with
poor similarity.

5.2 Tree Search

Once the input shape correspondences have been chosen, we
enumerate the dissection solutions derived from them using
a search tree. This step operates in the discrete connectivity
space rather the continuous geometric parameter space.
Each node of the tree corresponds to a partial dissection

solution with the root node being the empty solution. A child
of a node is generated by extending the node’s partial solution
by inserting one or more boundary intervals into one or more
dissection pieces. The newly created boundary intervals can
be connected to other dissection piece boundary intervals or
to a boundary interval on an input shape. For the second case,
connecting a boundary interval 𝛽 on a dissection piece to a
boundary interval 𝐼 on input shape 𝛼 means we set Γ𝛼(𝐼) = 𝛽.

(a) Matching constraint ordering
(Constraints 0 - 5)

(b) Dissection piece ordering
(Pieces 0 - 3)

(c) Complete solution

Fig. 14. Two different partial solutions (a), (b) which lead to the
same complete solution (c). Ordering by matching constraint means
that all the boundary intervals in the partial solution have connections.
Ordering by dissection piece means that the connectivity of several
boundary intervals (dashed lines) is unknown. In (a) boundary interval
connections are colored by matching constraint.

In the leaf nodes (complete solutions), every boundary interval
will have a connection in both arrangements. Fig. 13 shows
how the tree search incrementally extends partial dissection
solutions into complete solutions.

Search Ordering. The choice of the order in which to
insert the boundary intervals affects the ease of pruning partial
solutions. An obvious choice is to order by dissection piece;
i.e., a node at depth 𝑖 specifies the boundary intervals for
dissection pieces 1, ..., 𝑖 (Fig. 14(b)). However, this ordering
has the problem that after we insert the boundary intervals
for a given piece, we do not necessarily know which boundary
intervals they will connect to, since they may connect to
boundary intervals on pieces that we have not yet reached.
This uncertainty makes it difficult to formulate a bound on
the quality of partial solutions.
Therefore, we order the boundary intervals by matching

constraint rather than by dissection piece (Fig. 14(a)). That is,
a node at depth 𝑖 specifies the boundary intervals that belong
to matching constraints 1, ..., 𝑖. To generate the children of a
node at depth 𝑖, we consider all possible ways of generating
the boundary intervals for the matching constraint 𝑖+1. Each
way creates an additional child.

This ordering avoids the problem with the dissection-piece-
based ordering, because a boundary interval connects only to
other boundary intervals in its matching constraint. In other
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Fig. 15. An example of a topologically invalid connection (shown in
red) between boundary intervals.

Fig. 16. Visualizing the angular optimization problem. Vector mag-
nitudes are ignored and we optimize only over vector angles. The
notation is shown for some of the angles (𝜑 and 𝜓) used in the
optimization problem.

words, for every boundary interval 𝛽 in a partial solution,
we know that the connectivity of 𝛽 will not change in any
subsequent solution. Fig. 14 compares the two ways of ordering
the search.

6 PRUNING THE SEARCH SPACE

We now discuss the several ways in which we restrict the
search space to make the problem tractable.

Boundary Interval Limit. To ensure that the search
terminates, we limit the total number of boundary intervals
that can be present in a solution. For the results shown
herein, we set this limit to four times the number of matching
constraints.

Connectivity. We restrict the search to topologically valid
connectivities. We maintain a half-edge data structure through-
out the search that detects when connecting a pair of boundary
intervals is an invalid operation. Fig. 15 shows an example.

6.1 Orientation Based Pruning

In orientation based pruning, we solve a relaxed version of the
optimization problem described in Section 4 that gives a lower
bound on the solution quality. The main idea is to solve for
the dissection geometry in terms of edge vector orientations
while ignoring magnitudes. Fig. 16 visualizes this concept.

As in the full optimization problem, we want to minimize
the maximum angular difference between the input shape
edge vectors and their matching dissection piece edge vectors:

minimize
𝜃𝐸 ,𝜃,n

max
𝛼,𝑖

|𝜑𝛼,𝑖 − 𝜓𝛼,𝑖(𝜃𝐸 ,𝜃) + 2𝜋𝑛𝛼,𝑖|, (3)

where 𝛼 indexes over arrangements, 𝑖 indexes over the input
shape edge vectors, 𝜑𝛼,𝑖 and 𝜓𝛼,𝑖 are matching input shape
and dissection piece edge vector orientations, 𝜃𝐸 is the set of
edge vector orientation sequences for the matching constraints,
and 𝜃 is the dissection piece rotation angles. The integer
variables n make the angular differences modulo 2𝜋. This
objective is similar to that in (1), but expressed only in terms
of vector angles. Thus, 𝜃𝐸 in the angular problem corresponds
to 𝐸 in the full problem, while 𝜃 has the same meaning in
both problems.

The dissection piece edge vector orientations 𝜓 can be writ-
ten as linear functions of 𝜃𝐸 and 𝜃, by converting the functions
for the edge vector geometry in Section 4 to angular terms.
In general the formulas have the form ±𝜃𝑘1 ...± 𝜃𝑘𝑊 + 𝜃𝐸𝑖 or
±𝜃𝑘1 ...± 𝜃𝑘𝑊 + 𝜋 +Rev(𝜃𝐸𝑖). The second form corresponds
to the form in the full problem where we reverse and negate
the edge vector sequence, because negating a vector adds 𝜋
to its orientation.
The optimization may be written as a mixed integer opti-

mization, where the variables n are constrained to be integers
and 𝜃𝐸 and 𝜃 are continuous. We solve it using a commodity
solver [Gurobi Optimization 2016].
This optimization immediately generalizes to partial solu-

tions. In (3), we maximize only over the edge vectors belonging
to matching constraints that are specified in the partial so-
lution. Due to the matching constraint-based ordering, the
orientation formulas for these edge vectors will be defined
and will not change in any subsequent solution. When a
new matching constraint is added to the partial solution, the
maximization is taken over additional terms.

6.2 Full Geometry Pruning

The full geometry pruning generalizes the dissection geometry
optimization in Section 4 to partial dissection solutions. The
objective value given by this optimization is a lower bound,
meaning that no complete solution derived from the partial
solution will attain a better objective value. Fig. 17 visualizes
this optimization. The main idea is to relax the discreteness
of the problem by allowing for the insertion of “fractional”
boundary intervals.
The structure of the objective function and constraints in

this optimization are identical to that in (1). However, they
are expressed differently, due to the incomplete information
in a partial solution.

Objective for Partial Solutions. Recall that the objec-
tive function compares each input shape edge vector t𝛼,𝑖 with
its corresponding dissection piece edge vector b𝛼,𝑖 (Fig. 10(a)).
Each t𝛼,𝑖 lies on an input shape boundary interval 𝐼 that
belongs to a matching constraint M. If the partial solution
has not yet added the boundary intervals for M, then the
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(a) Partial Solution Connectivity

(b) Partial Solution Geometry (Low Resolution)

(c) Piece 3 Edge Vectors (High Resolution)

Fig. 17. Visualizing the geometry optimization for a partial solution.
(a) The connectivity representation of a partial solution where the
boundary intervals for the last matching constraint have not been
inserted. Locations where new boundary intervals can be inserted
are marked with gold dots. (b) The corresponding (low resolution)
geometry after optimization. Potential boundary intervals are drawn as
dotted lines. (c) The edge vectors for Piece 3 at higher resolution. The
edge vectors for boundary intervals in two different complete solutions
are shown in blue and green.

vector b𝛼,𝑖 is unknown. Next, we show how to express it in
terms of other variables.
Suppose 𝐼 lies on input shape 𝛼. We know that in any

complete solution derived from the partial solution, 𝐼 will
be reconstructed by some boundary interval 𝛽. Formally, we
know there will exist a 𝛽 for which Γ𝛼(𝐼) = 𝛽. As discussed

in Section 5.1, 𝐼 has a corresponding boundary interval 𝐼 on

input shape �̃�. Thus 𝛽 will have a corresponding dissection
piece boundary interval 𝛽 = Γ�̃�(𝐼). The boundary intervals 𝛽

and 𝛽 will belong to the same matching constraint, so they
both can be expressed as functions of an edge vector sequence
E𝑖. Denoting these functions as G𝛽(E𝑖) and G𝛽(E𝑖), we

define them as G𝑏(E𝑖) = E𝑖 and G𝛽(E𝑖) = −Rev(𝑅(𝜃,E𝑖))

if 𝛼 = �̃�, and G𝛽(E𝑖) = 𝑅(𝜃,E𝑖) otherwise. 𝜃 is added to
the optimization as a free variable; i.e., it is independent of
the rotation angles for the dissection pieces. Note that these
functions are like G𝛼,𝛽 from Section 4, except that the sum of
dissection piece rotation angles is replaced by the free variable

𝜃. These functions provide the values for any unknown b𝛼,𝑖.

Constraint for Partial Solutions. The constraint for
dissection piece 𝑙 ensures that the edge vectors around the
piece p𝑘,𝑙 form a closed curve (Fig. 10(b)). This formulation
does not work for a partial solution, because some of the
pieces will have new boundary intervals inserted in any com-
plete solution descended from the partial solution. Thus, it is
incorrect to take the sum only around the existing p𝑘,𝑙 .
We deal with this issue by inserting potential boundary

intervals into each dissection piece at points on the piece’s
boundary where it would be legal to insert a new boundary
interval (Fig. 17). Each potential boundary interval represents
geometry that could potentially be present in an eventual
complete solution. We represent the potential geometry for
dissection piece 𝑘 at insertion point 𝑣 with a single edge
vector, denoted p̂𝑘,𝑣. These edge vectors are free variables in
the optimization.

More specifically, p̂𝑘,𝑣 represents the net translation of zero
or more potentially inserted boundary intervals. By net trans-
lation, we mean the vector obtained by summing the edge
vectors in the boundary interval. It suffices to consider only
the net translations of the potential boundary intervals, be-
cause they are connected to nothing in this setting. Fig. 17(c)
illustrates this principle. The single edge vector p̂3,0 has the
same net translation as the two edge vector sequences shown
in blue and green.

The constraints from (1) are modified to take the potential
geometry into account, as follows:∑︁

𝑙

p𝑘,𝑙 +
∑︁
𝑣

p̂𝑘,𝑣 = 0, ∀𝑘. (4)

We can tighten the bound by constraining the total length
of the potential geometry. Suppose our search has an upper
limit of 𝑆 boundary intervals in the solution, and our partial
solution has already inserted 𝑆′ boundary intervals. Then,
we can have at most 𝑆 − 𝑆′ additional boundary intervals in
any eventual complete solution. Denoting the net length of
the edge vector sequence for matching constraint 𝑖 as 𝐿𝑖 =
||
∑︀

𝑗 e𝑖,𝑗 || (i.e., 𝐿𝑖 is the magnitude of the net translation

of the edge vector sequence for matching constraint 𝑖), and
letting 𝐿max = max𝑖 𝐿𝑖, we can add the constraint∑︁

𝑘

∑︁
𝑣

||p̂𝑘,𝑣|| ≤ (𝑆 − 𝑆′)𝐿max. (5)
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This constraint reflects the fact that we can add at most 𝑆−𝑆′

boundary intervals and each boundary interval consumes at
most 𝐿max length.
The use of potential boundary intervals is conceptually

similar to a continuous relaxation of an integer programming
problem. The number of boundary intervals inserted into a
piece is a discrete property, like the value of an integer variable.
The potential boundary intervals relax the discreteness by
allowing for the insertion of a “fraction” of a boundary interval,
just like continuous relaxation allows for assigning fractional
values to an integer variable.

6.3 Pruning Usage

We now describe how the pruning tests are incorporated into
the tree search.

The two pruning tests described in the previous subsection
require the solution of an optimization problem, which incurs
a significant computational expense, especially for the full
geometry pruning (Section 6.2). Additionally, at a sufficient
depth in the search tree, a significant proportion of tree
nodes (partial solutions) do not expand into any complete
solutions, because it is impossible to form a solution with valid
connectivity. Expanding a tree node (by inserting boundary
intervals for a given matching constraint and validating their
connectivity) is extremely cheap relative to the pruning tests.
Therefore, for these nodes it is more efficient (on average) to
check if the node expands to any complete solutions, and run
the pruning tests only if it does. For even deeper depths of
the search tree, it is most efficient to refrain from running the
pruning tests at all.

Procedure Details. For all the results shown in the pa-
per, we used the following search procedure. Let 𝑀 equal the
number of matching constraints we obtain from the corre-
spondence search described in Section 5.1. First, all partial
solutions at depth 𝑀

2
are generated and the pruning tests

are applied to them. Next, the remaining partial solutions
are assigned between 𝑃 processes that run in parallel. Each
process expands its partial solutions serially. At depth 3𝑀

4
,

we apply the pruning tests again, but only after verifying that
the node contains complete solutions as described above. This
simple procedure could likely be improved, but we found it
performed acceptably in practice.
We set the angular error threshold used for pruning to

min(15°, 1.5 · 𝜏𝑚𝑖𝑛), where 𝜏𝑚𝑖𝑛 is the lowest error among the
solutions found so far.

7 USER INTERACTION

Our solution search uses a geometric criterion to evaluate the
quality of a dissection. This criterion works well for weeding
out poor solutions, but it has difficulty discriminating between
high-quality solutions because it does not explicitly consider
human perception. We resolve this shortcoming by allowing
user guidance towards a final dissection solution, after the
automatic approach described in Section 5 has identified a
small set of promising candidate solutions.

(a) Initial Design (b) Suggested Edits

(c) Edited Input Shapes (d) Final Design

Fig. 18. A workflow in our user interface. (a) The initial design from
the automatic approach. Problematic areas are circled. The face’s
details have been smoothed out and the region around Florida is
distorted. (b) The original input shape with edit suggestions in red.
(c) The input shapes after the editing and painting of salient regions
(red). The original input shape is shown in gray. (d) The final design
after user edits. The face’s details have been restored and Florida is
no longer distorted.

The user selects one of the candidate solutions, which they
can refine by adjusting the terms of the optimization in (1)
through a graphical user interface. Fig. 18 shows an example
of this process.
In this phase of our approach, the optimization objective

uses a least squares term instead of the maximum angu-
lar error in order to control the tradeoff in deformation
between different parts of the mesh. The new objective is∑︀

𝛼

∑︀
𝑖 𝑤𝛼,𝑖||b𝛼,𝑖 − t𝛼,𝑖||2, where 𝑤𝛼,𝑖 is the preservation weight

of edge 𝑖 on input shape 𝛼.

Input Shape Editing Suggestions. Our approach tar-
gets input shapes that have a fuzzy geometric specification.
Thus, we allow the user to alter the input shapes to simplify
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Pieces J. Constraints Runtime

Dog-Bone 6 8 438 min

Cat-Fish 6 8 410 min

Dove-Bomb 6 8 368 min

Bunny-Egg 6 9 583 min

Serpent-Apple 5 8 96 min

Table 1. Performance on several inputs. For each test, we list the
number of pieces used, the number of matching constraints, and the
total runtime.

the optimizer’s job. Such edits are suggested to the user by
overlaying dissection piece boundary intervals on top of their
corresponding input shape boundary intervals as red curves.
The user can follow the suggestions by moving the input shape
edges towards these curves. The user often makes additional
edits to preserve the shape’s identity or coherency. Fig. 18
shows an example of this process where the user reshapes the
bottom and side of the head.

Salient Region Painting. Some areas on the input shapes
are salient in that human perception is especially sensitive to
distortions in them. The user can paint salient parts of the
input shape and the optimizer will prioritize them by increas-
ing the preservation weights for their edges. In Fig. 18(c) the
user prioritizes the preservation of the protrusions forming
Texas and Florida and the nose and lips of the head.

Direct Editing. The user can also directly edit the dis-
section pieces. To satisfy the matching constraints, these
edits will propagate to the geometry of other pieces. This
propagation is visualized interactively.

8 EXPERIMENTS AND RESULTS

8.1 Performance

We implemented our method in C++ and tested it on a 2.6
GHz laptop. Due to the exponential nature of the problem, our
solution search takes a substantial amount of time. However,
the search procedure described in Section 6.3 is embarrassingly
parallelizable, and we would expect our runtimes to decrease
substantially with the addition of more processors.
Table 1 summarizes the performance of our method. We

note that it is not unusual to see similar performance char-
acteristics when solving geometric problems in a vast combi-
natorial search space. For example, recent work by Kwan et
al. [2016] that tackled the 2D collage problem had comparable
timing, taking about 12 hours to generate their most complex
result.

8.2 Approximation Accuracy

We tested how increasing the piece count improves the accu-
racy of approximating the input shapes. Fig. 19(a) shows the
results across four dissections. We used the maximum angular
error from our optimization (1) to measure the approximation
accuracy. For the three piece counts tested, we observed a
roughly linear relationship.

(a) Approximation Error vs. Piece Count

(b) Dog-bone dissection with four and five pieces

(c) Effect of Pruning For 5-Piece Dissections

Fig. 19. (a) Decline in approximation error as the number of pieces
used is increased. (b) The best solutions for the dog-bone dissection
obtained with four and five pieces. (c) Performance gains obtained
from the pruning tests.

8.3 Pruning Efficiency Gain

We measured the extent to which the pruning tests (Section 6)
improve the performance of the solution search. Fig. 19(b)
compares the runtimes for pruning versus no pruning, for four
dissections, using a piece count of five. At this piece count,
the pruning improves the performance by a factor of roughly
15. For six pieces, all the trials run without pruning did not
finish after 24 hours.
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(a) Cat to Fish (b) Dove to Bomb

(c) Bear to Cat (d) Serpent to Apple

(e) Caterpillar to Butterfly (f) Map of Island to X

(g) Nike Logo to Shoe (h) United States to Trump

Fig. 20. Generating dissections between different shapes. Input shapes are shown on the left. Assembled pieces are shown on the right.
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(a) Arrangement Outlines (b) Dog Arrange-
ment

(c) Bone Arrangement (d) Incorrect Arrangement

Fig. 21. The fabricated dog bone puzzle. (a) Outlines of the arranged pieces that were shown to the participant.

8.4 Results

We used our approach to generate several dissections, which
are shown in Fig. 20. All the input shapes were obtained by
taking one of the first results from a Google image search.
The results show that our method supports organic ob-

jects (Fig. 20(a)–(e)), man-made objects (Fig. 20(b),(g)), the
outlines of geographic entities (Fig. 20(f),(h)), and abstract
shapes (Fig. 20(f),(g)). In most cases, six pieces were needed
to form a satisfactory approximation of the input shapes.
The two exceptions were the serpent-apple and Trump-USA
dissections, which used only five pieces. The Trump-USA re-
sult (Fig. 20(h)) shows how simple texturing can enhance a
dissection’s appearance.

8.5 Application to Puzzles

Our dissections can create a type of puzzle as shown in Fig. 21.
We fabricated several of our results and conducted an informal
user study in which participants were shown outlines of the
two shapes and instructed to assemble the pieces into those
shapes. We observed that the puzzles are substantially, albeit
not overwhelmingly, difficult. On average, it took a participant
about twenty minutes to solve the puzzles for both shapes.
The pieces can form coherent shapes that are not one of the
intended ones (Fig. 21(d)), which increases the difficulty of
the puzzle.
Future work could introduce a post-processing step which

partitions the original set of dissection pieces into smaller
ones, allowing the user to tune the difficulty of the puzzle.
The partition could aim for high similarity between the pieces,
as in traditional jigsaw puzzles.

8.6 Limitations

In some cases our approach fails to generate a satisfactory
dissection. Fig. 22 shows an example. Even with manual
editing, the constraints of the design mean that we cannot
capture the details of the Stanford bunny without causing
unsightly bulges and cavities on the egg. In such cases the
trade-off between the two options is left to the user.
Our method does not consider the physical properties of

the pieces, so it can generate pieces with extremely narrow

(a) Design with egg prioritized

(b) Design with bunny prioritized

Fig. 22. A failure. The input shapes are shown in gold. Even with user
interaction, problematic regions (circled) in both shapes cannot be
eliminated in a single design.

(a) (b) (c)

Fig. 23. The application of our method to a horror movie scene. (a) A
plate on a countertop. (b) The plate begins to vibrate and splits into
pieces. (c) The pieces rearrange themselves to form a devilish visage.
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sections that would be weak if fabricated. In our current
implementation, the user may manually edit the solution to
remove these sections. Future work could add a term to the
optimization in Section 4 which penalizes such sections.

We also ignore the semantic significance of the pieces. For
example, in the cat-fish dissection (Fig. 20(a)), one of the
pieces corresponds almost exactly to the cat’s head. These
cases may be undesirable when designing a puzzle as they
reduce its difficulty.
Finally, allowing pieces to flip between arrangements in

addition to rotate would allow us to generate a wider range
of solutions.

9 SUMMARY AND FUTURE WORK

We have introduced the approximate dissection problem, a
relaxation of the exact dissection problem, which allows us
to capture the essence of a pair of complex shapes using a
small number of pieces. We developed a combinatorial search
strategy for the problem that prunes the solution space to
identify high-quality dissection solutions in a tractable amount
of time.

Since our geometric approach cannot take into account the
perceptual significance of a given deformation, we developed
a novel user interface that allows a casual user to refine
the dissection solution. Our interface suggests alterations to
the input shapes that would make the dissection generation
easier, while allowing the user to add additional alterations
that preserve the identity of the input shape.

Our system enables the creation of dissections that are qual-
itatively different than previous ones. Dissections between
complex, naturalistic shapes possess a visceral quality that
is lacking in dissections between abstracted or geometrically
ideal shapes. These dissections can be used to convey a mes-
sage in a unique fashion (Fig. 23) or as a puzzle.
Our approach offers several opportunities for future work.

First, we could generalize it to support dissections between
more than two shapes. Second, the search time for the solution
is substantial, even with the pruning tests. There is potential
to boost performance by developing a special procedure for
the dissection geometry optimization (Section 4) since we
currently use a commodity solver [Wächter and Biegler 2006].
Developing additional ways of pruning partial solutions could
provide even larger gains. Finally, we could tackle the approx-
imate dissection problem in three dimensions. Our approach
does not naturally generalize to 3D, because we represent
dissection pieces as a ring of one-dimensional boundary inter-
vals and do not take piece interlocking into account. Hence, a
substantially different method would be needed.
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